VroniPlag Wiki

This Wiki is best viewed in Firefox with Adblock plus extension.

MEHR ERFAHREN

VroniPlag Wiki
Study of the influence of nanoparticles on the performance and the properties of polyamide 6

von Mohammad Reza Sarbandi

vorherige Seite | zur Übersichtsseite | folgende Seite

Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende

[1.] Mrs/Fragment 073 01 - Diskussion
Zuletzt bearbeitet: 2015-04-19 19:18:29 WiseWoman
Fragment, Gesichtet, Mrs, Russo 2008, SMWFragment, Schutzlevel sysop, Verschleierung

Typus
Verschleierung
Bearbeiter
Hindemith
Gesichtet
Yes
Untersuchte Arbeit:
Seite: 73, Zeilen: 1 ff. (entire page)
Quelle: Russo 2008
Seite(n): 2, Zeilen: 3 ff.
Use of the Ubbelohde viscometer

Capillary viscometry is conceptually simple: the time it takes a volume of polymer solution to flow through a thin capillary is compared to the time for a solvent flow. It turns out that the flow time for either is proportional to the viscosity, and inversely proportional to the density

Mrs 073a diss

The relative viscosity is defined to be the ratio ηsol'nsolvent . For most polymer solutions at the concentrations of interest, ρsol'n / ρsolvent ࣈ 1 . Thus, to a very good approximation, the relative viscosity is a simple time ratio:

Mrs 073b diss

"specific viscosity" is also defined to be the fractional change in viscosity upon addition of polymer:

Mrs 073c diss

Both ηrel and ηsp depend on the polymer concentration, so to extract the "intrinsic" properties of the polymer chain itself, one must extrapolate to zero concentration. Measuring at zero concentration (c=0) would be useless, but this concept of extrapolating to c=0 is very important in polymer characterization and in thermodynamics generally. The two quantities that are commonly plotted versus concentration and extrapolated to c=0 are ηsp and c-1ln (ηrel). A typical plot is Figure 5.5.

Use of the Ubbelohde viscometer

[...] Capillary viscometry is conceptually simple: the time it takes a volume of polymer solution to flow through a thin capillary is compared to the time for a solvent flow. It turns out that the flow time for either is proportional to the viscosity, and inversely proportional to the density.

Mrs 073a source

We define the relative viscosity to be the ratio ηsol'nsolvent. For most polymer solutions at the concentrations of interest, ρsol'n / ρsolvent ࣈ 1. Thus, to a very good approximation, the relative viscosity is a simple time ratio:

Mrs 073b source

We also define a "specific viscosity" to be the fractional change in viscosity upon addition of polymer:

Mrs 073c source

Both ηrel and ηsp depend on the polymer concentration, so to extract the "intrinsic" properties of the polymer chain itself, one must extrapolate to zero concentration. Measuring at zero concentration (c=0) would be useless, but this concept of extrapolating to c=0 is very important in polymer characterization and in thermodynamics generally. The two quantities that are commonly plotted vs. concentration and extrapolated to c=0 are ηsp and c-1ln (ηrel). A typical plot is shown below

Anmerkungen

The source is not mentioned.

Sichter
(Hindemith), SleepyHollow02



vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:WiseWoman, Zeitstempel: 20150419191928