VroniPlag Wiki

This Wiki is best viewed in Firefox with Adblock plus extension.

MEHR ERFAHREN

VroniPlag Wiki
Membrane androgen receptor activation triggers pro-apoptotic responses in vitro and in vivo and blocks migration in colon cancer

von S. G.

vorherige Seite | zur Übersichtsseite | folgende Seite

Statistik und Sichtungsnachweis dieser Seite findet sich am Artikelende

[1.] Shg/Fragment 034 01 - Diskussion
Zuletzt bearbeitet: 2014-11-01 21:16:10 Singulus
Fragment, Gesichtet, KomplettPlagiat, SMWFragment, Schutzlevel sysop, Shg, Vicente-Manzanares et al 2009

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Yes
Untersuchte Arbeit:
Seite: 34, Zeilen: 1-12
Quelle: Vicente-Manzanares et al 2009
Seite(n): 201-202, Zeilen: 201: re.Sp. 29-44 - 202: li.Sp. 1 ff.
[The direct interaction of focal adhesion kinase (FAK) and vinculin with the Arp2/3 complex [DeMali et al., 2002; Serrels et al., 2007], the main] nucleator of actin branching and polymerization in lamellipodia, constitutes a possible mechanism for targeting vinculin and FAK to future adhesion sites. The presence of activated integrins in regions of protrusion outside adhesions suggests that they enter the forming adhesion in an activated state [Galbraith et al., 2007; Kiosses et al., 2001]. The other implication is that adhesions might nucleate actin polymerization. This would provide a mechanism for the formation of actin filaments on which adhesions elongate; these appear to elongate from nascent adhesions at the lamellipodium-lamellum interface. This possibility is supported by the observation that purified integrin-adhesion complexes have actin-polymerization activity [Butler et al., 2006]. Although the neutralization of Arp2/3 in β3-integrin-containing adhesion complexes did not impair actin polymerization, targeting of the formin mDia did [Butler et al., 2006].

Butler, B., Gao, C., Mersich, A. T. and Blystone, S. D. (2006). Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr. Biol. 16, 242-251.

DeMali, K. A., Barlow, C. A. and Burridge, K. (2002). Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159, 881-891.

Galbraith, C. G., Yamada, K. M. and Galbraith, J. A. (2007). Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992-995.

Kiosses, W. B., Shattil, S. J., Pampori, N. and Schwartz, M. A. (2001). Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat. Cell Biol. 3, 316-320.

Serrels, B., Serrels, A., Brunton, V. G., Holt, M., McLean, G. W., Gray, C. H., Jones, G. E. and Frame, M. C. (2007). Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nat. Cell Biol. 9, 1046-1056.

[Seite 201]

In this context, the direct interaction of focal adhesion kinase (FAK) and vinculin with the Arp2/3 complex (DeMali et al., 2002; Serrels et al., 2007), the main nucleator of actin branching and polymerization in lamellipodia, constitutes a possible mechanism for targeting vinculin and FAK to future adhesion sites. The presence of activated integrins in regions of protrusion outside adhesions suggests that they enter the forming adhesion in an activated state (Galbraith et al., 2007; Kiosses et al., 2001). The other implication is that adhesions might nucleate actin polymerization. This would provide a mechanism for the formation of actin filaments on which adhesions elongate; these appear to elongate from nascent adhesions at the lamellipodium-lamellum interface. This possibility is supported by the observation that purified integrin-adhesion complexes have actin-polymerization activity (Butler et al., 2006). Although the neutralization of Arp2/3 in

[Seite 202]

β3-integrin-containing adhesion complexes did not impair actin polymerization, targeting of the formin mDia did (Butler et al., 2006).


Butler, B., Gao, C., Mersich, A. T. and Blystone, S. D. (2006). Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr. Biol. 16, 242-251.

DeMali, K. A., Barlow, C. A. and Burridge, K. (2002). Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159, 881-891.

Galbraith, C. G., Yamada, K. M. and Galbraith, J. A. (2007). Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992-995.

Kiosses, W. B., Shattil, S. J., Pampori, N. and Schwartz, M. A. (2001). Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat. Cell Biol. 3, 316-320.

Serrels, B., Serrels, A., Brunton, V. G., Holt, M., McLean, G. W., Gray, C. H., Jones, G. E. and Frame, M. C. (2007). Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nat. Cell Biol. 9, 1046-1056.

Anmerkungen

Art und Umfang der Übernahme bleiben ungekennzeichnet.

Sichter
(Graf Isolan), SleepyHollow02


[2.] Shg/Fragment 034 13 - Diskussion
Zuletzt bearbeitet: 2014-11-02 01:28:17 Hindemith
Fragment, Gesichtet, KomplettPlagiat, SMWFragment, Saarikangas et al 2010, Schutzlevel sysop, Shg

Typus
KomplettPlagiat
Bearbeiter
Graf Isolan
Gesichtet
Yes
Untersuchte Arbeit:
Seite: 34, Zeilen: 13-33
Quelle: Saarikangas et al 2010
Seite(n): 263, 270, Zeilen: 263: li.Sp. 51-52 - re.Sp. 1-17; 270: re.Sp. 26-28 - 271: li.Sp. 1 ff.
The organization and dynamics of the actin cytoskeleton are regulated by membrane phosphoinositides at several levels. First, many actin-binding proteins directly interact with phosphoinositides, which regulate the activity and/or subcellular localization of these proteins. Among different PIs, PIP2 is the best-characterized regulator of the actin cytoskeleton. PIP2 interacts directly with several actin-binding proteins and regulates their activities [Hilpela P, et al.2004, Sechi AS, Wehland J. 2000, Sheetz MP, et al. 2006, Yamaguchi H, et al. 2009]. Typically, PIP2 inhibits those actin-binding proteins that promote actin filament disassembly and activates proteins that induce actin filament assembly. Second, phosphoinositides control the subcellular localization of larger scaffolding proteins that are involved in the interplay between the actin cytoskeleton and plasma membrane or intracellular membrane organelles. Finally, proteins controlling the activity of Rho family small GTPases are in many cases regulated by plasma membrane phosphoinositides. The RhoA GTPase has a pronounced role in the formation and regulation of focal adhesion complexes and contractile actomyosin bundles such as stress fibers [Pelham RJ, et al. 1994]. RhoA induces actin polymerization at focal adhesions by activating the Dia1 formin and inhibits actin filament disassembly by initiating a signaling cascade that leads to phosphorylation and subsequent inactivation of the ADF/cofilin family of actin filament severing/depolymerizing proteins through the action of LIM kinases [Hotulainen P, Lappalainen P. 2006, Mahaffy [RE, Pollard TD. 2008, Watanabe N, et al. 1999, Vardouli et al 2005].]

Hilpela P, Vartiainen MK, Lappalainen P. (2004). Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol 282: 117–163.

Hotulainen P, Lappalainen P. (2006). Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173: 383–394.

Mahaffy RE, Pollard TD. (2008). Influence of phalloidin on the formation of actin filament branches by Arp2/3 complex. Biochemistry 47: 6460–6467.

Pelham RJ, Chang F. (2002). Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419: 82–86.

Sechi AS, Wehland J. (2000).The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P2 influences cytoskeletal protein activity at the plasma membrane. J Cell Sci 113: 3685–3695.

Sheetz MP, Sable JE, Dobereiner HG. (2006). Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35: 417–434.

Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1: 136–143.

Yamaguchi H, Shiraishi M, Fukami K, Tanabe A, Ikeda-Matsuo Y, Naito Y, Sasaki Y. (2009). MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains. J Cell Physiol 220: 748–755.

[Seite 263]

II. REGULATION OF ACTIN DYNAMICS BY PHOSPHOINOSITIDES

The organization and dynamics of the actin cytoskeleton are regulated by membrane phosphoinositides at several levels. First, many actin-binding proteins directly interact with phosphoinositides, which regulate the activity and/or subcellular localization of these proteins. Second, phosphoinositides control the subcellular localization of larger scaffolding proteins that are involved in the interplay between the actin cytoskeleton and plasma membrane or intracellular membrane organelles. Finally, proteins controlling the activity of Rho family small GTPases are in many cases regulated by plasma membrane phosphoinositides.

Among different PIs, PI(4,5)P2 is the best-characterized regulator of the actin cytoskeleton. PI(4,5)P2 interacts directly with several actin-binding proteins and regulates their activities (23, 141, 330, 332, 397). Typically, PI(4,5)P2 inhibits those actin-binding proteins that promote actin filament disassembly and activates proteins that induce actin filament assembly.

[Seite 270]

A. Rho Family GTPases

The RhoA GTPase has a pronounced role in the formation and regulation of focal adhesion complexes and contractile actomyosin bundles such as stress fibers (288, 308). RhoA induces actin polymerization at focal adhesions by activating the Dia1 formin and inhibits actin filament disassembly by initiating a signaling cascade that leads to phosphorylation and subsequent inactivation of the ADF/cofilin family of actin filament severing/depolymerizing proteins through the action of LIM kinases (146, 230, 383).


23. Bittar EE. (Editor). Advances in Molecular and Cell Biology. New York: Elsevier, 2006.

141. Hilpela P, Vartiainen MK, Lappalainen P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol 282: 117–163, 2004.

146. Hotulainen P, Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173: 383–394, 2006.

230. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895–898, 1999.

231. Mahaffy RE, Pollard TD. Influence of phalloidin on the formation of actin filament branches by Arp2/3 complex. Biochemistry 47: 6460–6467, 2008.

288. Pelham RJ, Chang F. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419: 82–86, 2002.

308. Ridley AJ, Hall A. Signal transduction pathways regulating Rhomediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 13: 2600–2610, 1994.

330. Sechi AS, Wehland J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P2 influences cytoskeletal protein activity at the plasma membrane. J Cell Sci 113: 3685–3695, 2000.

332. Sheetz MP, Sable JE, Dobereiner HG. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35: 417–434, 2006.

383. Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1: 136–143, 1999.

397. Yamaguchi H, Shiraishi M, Fukami K, Tanabe A, Ikeda-Matsuo Y, Naito Y, Sasaki Y. MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains. J Cell Physiol 220: 748–755, 2009.

Anmerkungen

Ohne Hinweis auf eine Übernahme.

Im Literaturverzeichnis von Shg findet sich keine Referenz für "Vardouli et al 2005". Beim Versuch, die Referenz [230] zu kopieren, hat sich Shg vertan und stattdessen die unter [231] stehende Referenz übernommen.

Sichter
(Graf Isolan), SleepyHollow02



vorherige Seite | zur Übersichtsseite | folgende Seite
Letzte Bearbeitung dieser Seite: durch Benutzer:Hindemith, Zeitstempel: 20141102014934